Abstract
Surge arresters primarily restrain lightning and switch surges in the power system to avoid damaging power equipment. When a surge arrester fails, it leads to huge damage to the power equipment. Therefore, this study proposed the application of a convolutional neural network (CNN) combined with a symmetrized dot pattern (SDP) to detect the state of the surge arrester. First, four typical fault types were constructed for the 18 kV surge arrester, including its normal state, aging of the internal valve, internal humidity, and salt damage to the insulation. Then, the partial discharge signal was measured and extracted using a high-speed data acquisition (DAQ) card, while a snowflake map was established by SDP for the features of each fault type. Finally, CNN was used to detect the status of the surge arrester. This study also used a histogram of oriented gradient (HOG) with support vendor machine (SVM), backpropagation neural network (BPNN), and k-nearest neighbors (KNN) for image feature extraction and identification. The result shows that the proposed method had the highest accuracy at 97.9%, followed by 95% for HOG + SVM, 94.6% for HOG + BPNN, and 91.2% for HOG + KNN. Therefore, the proposed method can effectively detect the fault status of surge arresters.
Funder
Ministry of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献