Airspace Geofencing and Flight Planning for Low-Altitude, Urban, Small Unmanned Aircraft Systems

Author:

Kim JosephORCID,Atkins EllaORCID

Abstract

Airspace geofencing is a key capability for low-altitude Unmanned Aircraft System (UAS) Traffic Management (UTM). Geofenced airspace volumes can be allocated to safely contain compatible UAS flight operations within a fly-zone (keep-in geofence) and ensure the avoidance of no-fly zones (keep-out geofences). This paper presents the application of three-dimensional flight volumization algorithms to support airspace geofence management for UTM. Layered polygon geofence volumes enclose user-input waypoint-based 3-D flight trajectories, and a family of flight trajectory solutions designed to avoid keep-out geofence volumes is proposed using computational geometry. Geofencing and path planning solutions are analyzed in an accurately mapped urban environment. Urban map data processing algorithms are presented. Monte Carlo simulations statistically validate our algorithms, and runtime statistics are tabulated. Benchmark evaluation results in a Manhattan, New York City low-altitude environment compare our geofenced dynamic path planning solutions against a fixed airway corridor design. A case study with UAS route deconfliction is presented, illustrating how the proposed geofencing pipeline supports multi-vehicle deconfliction. This paper contributes to the nascent theory and the practice of dynamic airspace geofencing in support of UTM.

Funder

Collins Aerospace

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Drone Technology Uses and Applications for Commercial, Industrial and Military Drones in 2020 and the Future. December 2019 https://www.businessinsider.in/tech/news/drone-technology-uses-and-applications-for-commercial-industrial-and-military-drones-in-2020-and-the-future/articleshow/72874958.cms

2. Estimation of traffic density from drone-based delivery in very low level urban airspace

3. U-Space Concept of Operations: A Key Enabler for Opening Airspace to Emerging Low-Altitude Operations

4. Internet of Unmanned Aerial Vehicles—A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3