An Incremental Grey-Box Current Regression Model for Anomaly Detection of Resistance Mash Seam Welding in Steel Mills

Author:

De Paepe DieterORCID,Van Yperen-De Deyne Andy,Defever Jan,Van Hoecke SofieORCID

Abstract

Annealing and galvanization production lines in steel mills run continuously to maximize production throughput. As a part of this process, individual steel coils are joined end-to-end using mash seam welding. Weld breaks result in a production loss of multiple days, so non-destructive, data-driven techniques are used to detect and replace poor quality welds in real-time. Statistical models are commonly used to address this problem as they use data readily available from the welding machine and require no specialized equipment. While successful in finding anomalies, these statistical models do not provide insight into the underlying process and are slow to adapt to changes in the machine’s or material’s behavior. We combine knowledge-based and data-driven techniques to create an incremental grey-box welding current prediction model for detecting anomalous welds, resulting in a powerful and interpretable model. In this work, we detail our approach and show evaluation results on industrial welding data collected over a period of 15 months containing behavioral shifts attributed to machine maintenance. Due to its incremental nature, our model resulted in two-thirds fewer rejected welds compared to statistical models, thus greatly reducing production overhead. Grey-box modeling can be applied to other welding features or domains and results in models that are more desirable for the industry.

Funder

Flanders Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3