Multi-Relational Graph Convolution Network for Service Recommendation in Mashup Development

Author:

Gao WeiORCID,Wu Jian

Abstract

With the rapid development of service-oriented computing, an overwhelming number of web services have been published online. Developers can create mashups that combine one or multiple services to meet complex business requirements. To speed up the mashup development process, recommending suitable services for developers is a vital problem. In this paper, we address the data sparsity and cold-start problems faced in service recommendation, and propose a novel multi-relational graph convolutional network framework (MRGCN) for service recommendation. Specifically, we first construct a multi-relational mashup-service graph with three types of relations, namely composition relation, functional relation, and tagging relation. These three relations are indispensable and complement each other for capturing multi-view information. Then, the three relations in the graph are seamlessly fused with various strategies. Next, graph convolution is performed on the fused multi-relational graph to capture the high-order relational information between mashups and services. Finally, the relevance between mashup requirements and services is predicted based on the learned features on the graph. We conduct extensive experiments on the ProgrammableWeb dataset and demonstrate that our proposed method can outperform state-of-the-art methods in recommending services when only mashup requirements are available.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3