Abstract
With the rapid development of service-oriented computing, an overwhelming number of web services have been published online. Developers can create mashups that combine one or multiple services to meet complex business requirements. To speed up the mashup development process, recommending suitable services for developers is a vital problem. In this paper, we address the data sparsity and cold-start problems faced in service recommendation, and propose a novel multi-relational graph convolutional network framework (MRGCN) for service recommendation. Specifically, we first construct a multi-relational mashup-service graph with three types of relations, namely composition relation, functional relation, and tagging relation. These three relations are indispensable and complement each other for capturing multi-view information. Then, the three relations in the graph are seamlessly fused with various strategies. Next, graph convolution is performed on the fused multi-relational graph to capture the high-order relational information between mashups and services. Finally, the relevance between mashup requirements and services is predicted based on the learned features on the graph. We conduct extensive experiments on the ProgrammableWeb dataset and demonstrate that our proposed method can outperform state-of-the-art methods in recommending services when only mashup requirements are available.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献