LQFM289: Electrochemical and Computational Studies of a New Trimetozine Analogue for Anxiety Treatment

Author:

Pereira Jhon K. A.1,Costa André G. C.1,Rodrigues Edson S. B.1ORCID,Macêdo Isaac Y. L.1ORCID,Pereira Marx O. A.1ORCID,Menegatti Ricardo1ORCID,de Oliveira Severino C. B.2ORCID,Guimarães Freddy3,Lião Luciano M.3ORCID,Sabino José R.4,de S. Gil Eric1ORCID

Affiliation:

1. Faculty of Pharmacy, Federal University of Goias, Goiânia 74690-970, Brazil

2. Departament of Chemistry, Federal Rural University of Pernambuco, Recife 52171-900, Brazil

3. Institute of Chemistry, Federal University of Goias, Goiânia 74690-970, Brazil

4. Institute of Physics, Federal University of Goias, Goiânia 74690-970, Brazil

Abstract

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound’s behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.

Funder

Coordenadoria de Aperfeiçoamento de Pessoal

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3