Forensic Proteomics for the Discovery of New post mortem Interval Biomarkers: A Preliminary Study

Author:

Marrone Alessandro1ORCID,La Russa Daniele1ORCID,Barberio Laura1,Murfuni Maria Stella2,Gaspari Marco2ORCID,Pellegrino Daniela1ORCID

Affiliation:

1. Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy

2. Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy

Abstract

Estimating the time since death (post mortem interval, PMI) represents one of the most important tasks in daily forensic casework. For decades, forensic scientists have investigated changes in post mortem body composition, focusing on different physical, chemical, or biological aspects, to discover a reliable method for estimating PMI; nevertheless, all of these attempts remain unsuccessful considering the currently available methodical spectrum characterized by great inaccuracies and limitations. However, recent promising approaches focus on the post mortem decomposition of biomolecules. In particular, significant advances have been made in research on the post mortem degradation of proteins. In the present study, we investigated early post mortem changes (during the first 24 h) in the proteome profile of the pig skeletal muscle looking for new PMI specific biomarkers. By mass spectrometry (MS)-based proteomics, we were able to identify a total of nine potential PMI biomarkers, whose quantity changed constantly and progressively over time, directly or inversely proportional to the advancement of post mortem hours. Our preliminary study underlines the importance of the proteomic approach in the search for a reliable method for PMI determination and highlights the need to characterize a large number of reliable marker proteins useful in forensic practice for PMI estimation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3