The Generation of a Nanobody-Based ELISA for Human Microsomal Epoxide Hydrolase

Author:

He Qiyi12,McCoy Mark R.1,Qi Meng1,Morisseau Christophe1ORCID,Yang Huiyi12,Xu Chengpeng1,Shey Rachel1,Goodman Michael C.1,Zhao Suqing2,Hammock Bruce D.1ORCID

Affiliation:

1. Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA

2. Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China

Abstract

A microsomal epoxide hydrolase (mEH) metabolizes in vivo in both xenobiotic and endogenous epoxides associated with signaling function. Findings in patients suggest that mEH might be a biomarker for several diseases, including metastatic cancer and viral hepatitis. To easily quantify mEH, nanobodies specific to the human mEH were isolated from a phage library of llama VHHs. Four unique clones were obtained and used for developing ELISAs. Three formats of double antibody sandwich assays were investigated using different detection strategies. Using PolyHRP, the signal was strongly amplified, yielding a 22-fold lower LOD (12 pg mL−1) than the ‘conventional’. To further validate the performance of the immunoassays, human tissue samples were analyzed by nanobody-based ELISAs and compared to the enzyme activities (R2 > 0.95). The results demonstrate that these nanobodies are powerful tools for the quantification of human mEH and could eventually result in a bedside assay.

Funder

NIH-NIEHS

Guangdong Basic and Applied Basic Research Foundation

China Scholarship Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3