Molecular Characterization and Mutational Analysis of Clarithromycin- and Levofloxacin-Resistance Genes in Helicobacter pylori from Gastric Biopsies in Southern Croatia

Author:

Šamanić Ivica1ORCID,Dadić Blanka1,Sanader Maršić Željka2ORCID,Dželalija Mia1ORCID,Maravić Ana1,Kalinić Hrvoje3,Vrebalov Cindro Pavle4,Šundov Željko45,Tonkić Marija6,Tonkić Ante45,Vuković Jonatan45

Affiliation:

1. Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia

2. Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia

3. Department of Compute Science, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia

4. Department of Gastroenterology, University Hospital of Split, 21000 Split, Croatia

5. Department of Internal Medicine, School of Medicine, University of Split, 21000 Split, Croatia

6. Department of Medical Microbiology and Parasitology, School of Medicine, University of Split, 21000 Split, Croatia

Abstract

Point mutations in the 23S rRNA, gyrA, and gyrB genes can confer resistance to clarithromycin (CAM) and levofloxacin (LVX) by altering target sites or protein structure, thereby reducing the efficacy of standard antibiotics in the treatment of Helicobacter pylori infections. Considering the confirmed primary CAM and LVX resistance in H. pylori infected patients from southern Croatia, we performed a molecular genetic analysis of three target genes (23S rRNA, gyrA, and gyrB) by PCR and sequencing, together with computational molecular docking analysis. In the CAM-resistant isolates, the mutation sites in the 23S rRNA gene were A2142C, A2142G, and A2143G. In addition, the mutations D91G and D91N in GyrA and N481E and R484K in GyrB were associated with resistance to LVX. Molecular docking analyses revealed that mutant H. pylori strains with resistance-related mutations exhibited a lower susceptibility to CAM and LVX compared with wild-type strains due to significant differences in non-covalent interactions (e.g., hydrogen bonds, ionic interactions) leading to destabilized antibiotic–protein binding, ultimately resulting in antibiotic resistance. Dual resistance to CAM and LVX was found, indicating the successful evolution of H. pylori resistance to unrelated antimicrobials and thus an increased risk to human health.

Funder

annual funds for institutional financing of scientific activities of the Ministry of Science and Education of the Republic of Croatia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3