Paclitaxel and Caffeine–Taurine, New Colchicine Alternatives for Chromosomes Doubling in Maize Haploid Breeding

Author:

Arshad Saeed1,Wei Mengli1,Ali Qurban2ORCID,Mustafa Ghulam2ORCID,Ma Zhengqiang1,Yan Yuanxin13

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China

2. Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China

3. Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China

Abstract

The doubled haploid (DH) technology is employed worldwide in various crop-breeding programs, especially maize. Still, restoring tassel fertility is measured as one of the major restrictive factors in producing DH lines. Colchicine, nitrous oxide, oryzalin, and amiprophosmethyl are common chromosome-doubling agents that aid in developing viable diploids (2n) from sterile haploids (n). Although colchicine is the most widely used polyploidy-inducing agent, it is highly toxic to mammals and plants. Therefore, there is a dire need to explore natural, non-toxic, or low-toxic cheaper and accessible substitutes with a higher survival and fertility rate. To the best of our knowledge, the advanced usage of human anticancer drugs “Paclitaxel (PTX)” and “Caffeine–Taurine (CAF–T)” for in vivo maize haploids doubling is being disclosed for the first time. These two antimitotic and antimicrotubular agents (PTX and CAF–T) were assessed under various treatment conditions compared to colchicine. As a result, the maximum actual doubling rates (ADR) for PTX versus colchicine in maize haploid seedlings were 42.1% (400 M, 16 h treatment) versus 31.9% (0.5 mM, 24 h treatment), respectively. In addition, the ADR in maize haploid seeds were CAF–T 20.0% (caffeine 2 g/L + taurine 12 g/L, 16 h), PTX 19.9% (100 μM, 24 h treatment), and colchicine 26.0% (2.0 mM, 8 h treatment). Moreover, the morphological and physiological by-effects in haploid plants by PTX were significantly lower than colchicine. Hence, PTX and CAF–T are better alternatives than the widely used traditional colchicine to improve chromosome-doubling in maize crop.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Outstanding Scientific Innovation Team Program for Jiangsu Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3