Synthesis and Antiviral and Antitumor Activities of Novel 18β-Glycyrrhetinic Acid Derivatives

Author:

Pan Bo-Wen1ORCID,Zheng Liang-Liang1,Shi Yang1,Dong Zhang-Chao1,Feng Ting-Ting1,Yang Jian2,Wei Ying1,Zhou Ying1

Affiliation:

1. College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

2. College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada

Abstract

A series of novel derivatives of 18β-glycyrrhetinic acid (GA) were synthesized by introducing aromatic or heterocyclic structures to extend the side chain, thereby enhancing their interaction with amino acid residues in the active pocket of the target protein. These compounds were structurally characterized using 1H NMR, 13C NMR, and HRMS. The compounds were subsequently evaluated for their inhibitory effects on HIV-1 protease and cell viability in the human cancer cell lines K562 and HeLa and the mouse cancer cell line CT26. Towards HIV-1 protease, compounds 28 and 32, which featured the introduction of heterocyclic moieties at the C3 position of GA, exhibited the highest inhibition, with inhibition rates of 76% and 70.5%, respectively, at 1 mg/mL concentration. Further molecular docking suggests that a 3-substituted polar moiety would be likely to enhance the inhibitory activity against HIV-1 protease. As for the anti-proliferative activities of the GA derivatives, incorporation of a thiazole heterocycle at the C3- position in compound 29 significantly enhanced the effect against K562 cells with an IC50 value of 8.86 ± 0.93 µM. The introduction of electron-withdrawing substituents on the C3-substituted phenyl ring augmented the anti-proliferative activity against Hela and CT26 cells. Compound 13 exhibited the highest inhibitory activity against Hela cells with an IC50 value of 9.89 ± 0.86 µM, whereas compound 7 exerted the strongest inhibition against CT26 cells with an IC50 value of 4.54 ± 0.37 µM. These findings suggest that further modification of GA is a promising path for developing potent novel anti-HIV and anticancer therapeutics.

Funder

the Guizhou Provincial Basic Research Program

the Innovation Group Project of Guizhou Province

2023 Natural Science Research Project of Guizhou Provincial Department of Education

Key Disciplines of Traditional Chinese Medicine and Ethnic Medicine in Guizhou Province during the 14th Five-Year Plan

the projects of Guizhou province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3