On the Efficiency of the Density Functional Theory (DFT)-Based Computational Protocol for 1H and 13C Nuclear Magnetic Resonance (NMR) Chemical Shifts of Natural Products: Studying the Accuracy of the pecS-n (n = 1, 2) Basis Sets

Author:

Rusakov Yuriy Yu.1ORCID,Semenov Valentin A.1ORCID,Rusakova Irina L.1ORCID

Affiliation:

1. A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia

Abstract

The basis set issue has always been one of the most important factors of accuracy in the quantum chemical calculations of NMR chemical shifts. In a previous paper, we developed new pecS-n (n = 1, 2) basis sets purposed for the calculations of the NMR chemical shifts of the nuclei of the most popular NMR-active isotopes of 1–2 row elements and successfully approbated these on the DFT calculations of chemical shifts in a limited series of small molecules. In this paper, we demonstrate the performance of the pecS-n (n = 1, 2) basis sets on the calculations of as much as 713 1H and 767 13C chemical shifts of 23 biologically active natural products with complicated stereochemical structures, carried out using the GIAO-DFT(PBE0) approach. We also proposed new alternative contraction schemes for our basis sets characterized by less contraction depth of the p-shell. New contraction coefficients have been optimized with the property-energy consistent (PEC) method. The accuracies of the pecS-n (n = 1, 2) basis sets of both the original and newly contracted forms were assessed on massive benchmark calculations of proton and carbon chemical shifts of a vast variety of natural products. It was found that less contracted pecS-n (n = 1, 2) basis sets provide no noticeable improvement in accuracy. These calculations represent the most austere test of our basis sets as applied to routine calculations of the NMR chemical shifts of real-life compounds.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3