Analysis of Potential Biomarkers in Frontal Temporal Dementia: A Bioinformatics Approach

Author:

Momin Inara Deedar1,Rigler Jessica1,Chitrala Kumaraswamy Naidu1

Affiliation:

1. Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA

Abstract

Frontal temporal dementia (FTD) is a neurological disorder known to have fewer therapeutic options. So far, only a few biomarkers are available for FTD that can be used as potential comorbidity targets. For example, genes such as VCP, which has a role in breast cancer, and WFS1, which has a role in COVID-19, are known to show a role in FTD as well. To this end, in the present study, we aim to identify potential biomarkers or susceptible genes for FTD that show comorbidities with diseases such as COVID-19 and breast cancer. A dataset from Gene Expression Omnibus containing FTD expression profiles from African American and white ethnicity backgrounds was included in our study. In FTD samples of the GSE193391 dataset, we identified 305 DEGs, with 168 genes being up-regulated and 137 genes being down-regulated. We conducted a comorbidity analysis for COVID-19 and breast cancer, followed by an analysis of potential drug interactions, pathogenicity, analysis of genetic variants, and functional enrichment analysis. Our results showed that the genes AKT3, GFAP, ADCYAP1R1, VDAC1, and C4A have significant transcriptomic alterations in FTD along with the comorbidity status with COVID-19 and breast cancer. Functional pathway analysis revealed that these comorbid genes were significantly enriched in the pathways such as glioma, JAK/STAT signaling, systematic lupus erythematosus, neurodegeneration-multiple diseases, and neuroactive ligand–receptor interaction. Overall, from these results, we concluded that these genes could be recommended as potential therapeutic targets for the treatment of comorbidities (breast cancer and COVID-19) in patients with FTD.

Funder

National Institute on Minority Health and Health Disparities (NIMHD) of the National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3