Non-Steroidal Anti-Inflammatory Drug Effect on the Binding of Plasma Protein with Antibiotic Drug Ceftazidime: Spectroscopic and In Silico Investigation

Author:

Sajid Ali Mohd1ORCID,Singh Ekampreet2,Muthukumaran Jayaraman2ORCID,Al-Lohedan Hamad A.1ORCID

Affiliation:

1. Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India

Abstract

The coexistence of ceftazidime, which is a popular third-generation of cephalosporin antibiotic, with ubiquitous paracetamol or acetaminophen, is very likely because the latter is given to the patients to reduce fever due to bacterial infection along with an antibiotic such as the former. Therefore, in this study, we investigated the detailed binding of ceftazidime with plasma protein, human serum albumin (HSA), in the absence and presence of paracetamol using spectroscopic techniques such as fluorescence, UV-visible, and circular dichroism, along with in silico methods such as molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis. The basic idea of the interaction was attained by using UV-visible spectroscopy. Further, fluorescence spectroscopy revealed that there was a fair interaction between ceftazidime and HSA, and the mechanism of the quenching was a dynamic one, i.e., the quenching constant increased with increasing temperature. The interaction was, primarily, reinforced by hydrophobic forces, which resulted in the partial unfolding of the protein. Low concentrations of paracetamol were ineffective in affecting the binding of ceftazidime with has; although, a decrease in the quenching and binding constants was observed in the presence of high concentrations of the former. Competitive binding site experiments using warfarin and ibuprofen as site markers revealed that ceftazidime neither binds at drug site 1 or at drug site 2, articulating another binding site, which was confirmed by molecular docking simulations.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3