OGR1 (GPR68) and TDAG8 (GPR65) Have Antagonistic Effects in Models of Colonic Inflammation

Author:

Perren Leonie1ORCID,Busch Moana1,Schuler Cordelia1ORCID,Ruiz Pedro A.1ORCID,Foti Federica1,Weibel Nathalie1,de Vallière Cheryl1ORCID,Morsy Yasser1ORCID,Seuwen Klaus1,Hausmann Martin1,Rogler Gerhard1ORCID

Affiliation:

1. Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland

Abstract

G-protein-coupled receptors (GPRs), including pro-inflammatory ovarian cancer GPR1 (OGR1/GPR68) and anti-inflammatory T cell death-associated gene 8 (TDAG8/GPR65), are involved in pH sensing and linked to inflammatory bowel disease (IBD). OGR1 and TDAG8 show opposite effects. To determine which effect is predominant or physiologically more relevant, we deleted both receptors in models of intestinal inflammation. Combined Ogr1 and Tdag8 deficiency was assessed in spontaneous and acute murine colitis models. Disease severity was assessed using clinical scores. Colon samples were analyzed using quantitative polymerase chain reaction (qPCR) and flow cytometry (FACS). In acute colitis, Ogr1-deficient mice showed significantly decreased clinical scores compared with wildtype (WT) mice, while Tdag8-deficient mice and double knockout (KO) mice presented similar scores to WT. In Il-10-spontaneous colitis, Ogr1-deficient mice presented significantly decreased, and Tdag8-deficient mice had increased inflammation. In the Il10−/− × Ogr1−/− × Tdag8−/− triple KO mice, inflammation was significantly decreased compared with Tdag8−/−. Absence of Ogr1 reduced pro-inflammatory cytokines in Tdag8-deficient mice. Tdag8−/− had significantly more IFNγ+ T-lymphocytes and IL-23 T-helper cells in the colon compared with WT. The absence of OGR1 significantly alleviates the intestinal damage mediated by the lack of functional TDAG8. Both OGR1 and TDAG8 represent potential new targets for therapeutic intervention.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3