BSA-Seq for the Identification of Major Genes for EPN in Rice

Author:

Shen Shen1,Xu Shanbin1,Wang Mengge1,Ma Tianze1,Chen Ning1,Wang Jingguo1,Zheng Hongliang1,Yang Luomiao1,Zou Detang1ORCID,Xin Wei1,Liu Hualong1

Affiliation:

1. Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China

Abstract

Improving rice yield is one of the most important food issues internationally. It is an undeniable goal of rice breeding, and the effective panicle number (EPN) is a key factor determining rice yield. Increasing the EPN in rice is a major way to increase rice yield. Currently, the main quantitative trait locus (QTL) for EPN in rice is limited, and there is also limited research on the gene for EPN in rice. Therefore, the excavation and analysis of major genes related to EPN in rice is of great significance for molecular breeding and yield improvement. This study used japonica rice varieties Dongfu 114 and Longyang 11 to construct an F5 population consisting of 309 individual plants. Two extreme phenotypic pools were constructed by identifying the EPN of the population, and QTL-seq analysis was performed to obtain three main effective QTL intervals for EPN. This analysis also helped to screen out 34 candidate genes. Then, EPN time expression pattern analysis was performed on these 34 genes to screen out six candidate genes with higher expression levels. Using a 3K database to perform haplotype analysis on these six genes, we selected haplotypes with significant differences in EPN. Finally, five candidate genes related to EPN were obtained.

Funder

China Postdoctoral Science Foundation

Breeding of high quality and resistant rice varieties

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3