Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs

Author:

Murueva Anastasiya V.12,Shershneva Anna M.2,Shishatskaya Ekaterina I.123ORCID,Volova Tatiana G.12

Affiliation:

1. Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia

2. Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia

3. Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia

Abstract

The development of controlled drug delivery systems, in the form of microparticles, is an important area of experimental pharmacology. The success of the design and the quality of the obtained microparticles are determined by the method of manufacture and the properties of the material used as a carrier. The goal is to obtain and characterize microparticles depending on their method of preparation, the chemical composition of the polymer and the load of the drugs. To obtain microparticles, four types of degradable PHAs, differing in their chemical compositions, degrees of crystallinity, molecular weights and temperature characteristics, were used (poly-3-hydroxybutyrate and copolymers 3-hydroxybutyric-co-3-hydroxyvaleric acid, 3-hydroxybutyric-co-4-hydroxybutyric acid, and 3-hydroxybutyric-co-3-hydroxyhexanoic acid). The characteristics of microparticles from PHAs were studied. Good-quality particles with an average particle diameter from 0.8 to 65.0 μm, having satisfactory ζ potential values (from −18 to −50 mV), were obtained. The drug loading content, encapsulation efficiency and in vitro release were characterized. Composite microparticles based on PHAs with additives of polyethylene glycol and polylactide-co-glycolide, and loaded with ceftriaxone and 5-fluorouracil, showed antibacterial and antitumor effects in E. coli and HeLa cultures. The results indicate the high potential of PHAs for the design of modern and efficient drug delivery systems.

Funder

State Assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference139 articles.

1. A Review of Biodegradale Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies;Amass;Polym. Int.,1998

2. Blitz, J. (2005). Surface Chemistry in Biomedical and Environmental Science, Springer.

3. Multifunctional nanocarriers;Torchilin;Adv. Drug Deliv. Rev.,2006

4. Drug carriers in pharmaceutical design: Promises and progress;Dutta;Curr. Pharm. Des.,2007

5. Panarin, E.F., Lavrov, N.A., Solovskii, M.V., and Shalnova, L.I. (2014). Polymers—Carriers of biologically active substances, Publishing House of the COP “Profession”.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3