Graphitic Carbon Nitride/Zinc Oxide-Based Z-Scheme and S-Scheme Heterojunction Photocatalysts for the Photodegradation of Organic Pollutants

Author:

Panthi Gopal1,Park Mira12ORCID

Affiliation:

1. Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea

2. Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea

Abstract

Graphitic carbon nitride (g-C3N4), a metal-free polymer semiconductor, has been recognized as an attractive photocatalytic material for environmental remediation because of its low band gap, high thermal and photostability, chemical inertness, non-toxicity, low cost, biocompatibility, and optical and electrical efficiency. However, g-C3N4 has been reported to suffer from many difficulties in photocatalytic applications, such as a low specific surface area, inadequate visible-light utilization, and a high charge recombination rate. To overcome these difficulties, the formation of g-C3N4 heterojunctions by coupling with metal oxides has triggered tremendous interest in recent years. In this regard, zinc oxide (ZnO) is being largely explored as a self-driven semiconductor photocatalyst to form heterojunctions with g-C3N4, as ZnO possesses unique and fascinating properties, including high quantum efficiency, high electron mobility, cost-effectiveness, environmental friendliness, and a simple synthetic procedure. The synergistic effect of its properties, such as adsorption and photogenerated charge separation, was found to enhance the photocatalytic activity of heterojunctions. Hence, this review aims to compile the strategies for fabricating g-C3N4/ZnO-based Z-scheme and S-scheme heterojunction photocatalytic systems with enhanced performance and overall stability for the photodegradation of organic pollutants. Furthermore, with reference to the reported system, the photocatalytic mechanism of g-C3N4/ZnO-based heterojunction photocatalysts and their charge-transfer pathways on the interface surface are highlighted.

Funder

Ministry of Science, ICT and Future Planning

Korean government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3