The Abundant and Unique Transcripts and Alternative Splicing of the Artificially Autododecaploid London Plane (Platanus × acerifolia)

Author:

Yan Xu1,Chen Xiyan1,Li Yangyang1,Li Yuhan1,Wang Fei1,Zhang Jiaqi1,Ning Guogui1,Bao Manzhu1

Affiliation:

1. National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers relative to their hexaploid progenitors. Transcriptome analysis based on full-length Oxford Nanopore Technologies (ONTs) and next-generation sequencing (NGS) revealed that the increased ploidy level in P. × acerifolia led to more transcribed isoforms, accompanied by an increase in the number of isoforms per gene. The functional enrichment of genes indicated that novel genes transcribed specifically in the dodecaploids may have been highly correlated with the ability to maintain genome stability. The dodecaploids showed a higher number of genes with upregulated differentially expressed genes (DEGs) compared with the hexaploid counterpart. The genome duplication of P. × acerifolia resulted mainly in the DEGs involved in basic biological pathways. It was noted that there was a greater abundance of alternative splicing (AS) events and AS genes in the dodecaploids compared with the hexaploids in P. × acerifolia. In addition, a significant difference between the structure and expression of AS events between the hexaploids and dodecaploids of Platanus was found. Of note, some DEGs and differentially spliced genes (DSGs) related to floral transition and flower development were consistent with the few flower traits in the dodecaploids of P. × acerifolia. Collectively, our findings explored the difference in transcription and AS regulation between the hexaploids and dodecaploids of P. × acerifolia and gained new insight into the molecular mechanisms underlying the few-flower phenotype of P. × acerifolia. These results contribute to uncovering the regulatory role of transcription and AS in polyploids and breeding few-flower germplasms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference100 articles.

1. Henry, A., and Flood, M.G. (1919). Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, JSTOR2. [2nd ed.].

2. Ward, L.F. (1888). Proceedings of the United States National Museum, Government Printing Office. [2nd ed.].

3. The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks;Zonneveld;Forum Geobot.,2019

4. Chromosomal Conspectus and Evolutionary Status of lndian Commercial Timbers (Hardwoods);Bedi;Cytologia,1991

5. Karyomorphology and evolution in some Hamamelidaceae and Platanaceae (Hamamelididae; Hamamelidales);Oginuma;Bot. Mag. Shokubutsu-Gaku-Zasshi,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3