Metabolite Profiling of Conifer Needles: Tracing Pollution and Climate Effects

Author:

Miricioiu Marius Gheorghe1ORCID,Ionete Roxana Elena1ORCID,Simova Svetlana2ORCID,Gerginova Dessislava2ORCID,Botoran Oana Romina1ORCID

Affiliation:

1. ICSI Analytics Group, National Research and Development Institute of Cryogenic and Isotopic Technologies–ICSI Rm. Vâlcea, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania

2. Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, “Acad G. Bonchev” Street, Bl. 9, 1113 Sofia, Bulgaria

Abstract

In the face of escalating environmental challenges, understanding the intricate relationship between plant metabolites, pollution stress, and climatic conditions is of paramount importance. This study aimed to conduct a comprehensive analysis of metabolic variations generated through 1H and 13C NMR measurements in evergreen needles collected from different regions with varying pollution levels. Multivariate analyses were employed to identify specific metabolites responsive to pollution stress and climatic factors. Air pollution indicators were assessed through ANOVA and Pearson correlation analyses. Our results revealed significant metabolic changes attributed to geographical origin, establishing these conifer species as potential indicators for both air pollution and climatic conditions. High levels of air pollution correlated with increased glucose and decreased levels of formic acid and choline. Principal component analysis (PCA) unveiled a clear species separation, largely influenced by succinic acid and threonine. Discriminant analysis (DA) confirmed these findings, highlighting the positive correlation of glucose with pollution grade. Beyond pollution assessment, these metabolic variations could have ecological implications, impacting interactions and ecological functions. Our study underscores the dynamic interplay between conifer metabolism, environmental stressors, and ecological systems. These findings not only advance environmental monitoring practices but also pave the way for holistic research encompassing ecological and physiological dimensions, shedding light on the multifaceted roles of metabolites in conifer responses to environmental challenges.

Funder

Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3