Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation

Author:

Feldman Vladimir I.1ORCID

Affiliation:

1. Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

The reactive open-shell species play a very important role in the radiation-induced molecular evolution occurring in the cold areas of space and presumably leading to the formation of biologically relevant molecules. This review presents an insight into the mechanism of such processes coming from matrix isolation studies with a main focus on the experimental and theoretical studies performed in the author’s laboratory during the past decade. The radicals and radical cations produced from astrochemically relevant molecules were characterized by Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Small organic radicals containing C, O, and N atoms are considered in view of their possible role in the formation of complex organic molecules (COMs) in space, and a comparison with earlier results is given. In addition, the radical–molecule complexes generated from isolated intermolecular complexes in matrices are discussed in connection with their model significance as the building blocks for COMs formed under the conditions of extremely restricted molecular mobility at cryogenic temperatures.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3