Molecular Dynamics Modeling of Pulsed Laser Fragmentation of Solid and Porous Si Nanoparticles in Liquid Media

Author:

Kutlubulatova Irina A.12,Grigoryeva Maria S.1,Dimitreva Veronika A.2ORCID,Lukashenko Stanislav Yu.13ORCID,Kanavin Andrey P.1,Timoshenko Viktor Yu.14ORCID,Ivanov Dmitry S.1ORCID

Affiliation:

1. P. N. Lebedev Physical Institute of Russian Academy of Sciences, Leninskiy Prospekt, 53, 119991 Moscow, Russia

2. Institute of Engineering Physics for Biomedicine (PhysBio), Moscow Engineering Physics Institute (MEPhI), 115409 Moscow, Russia

3. Institute for Analytical Instrumentation of the Russian Academy of Sciences, Rizhsky Prospekt, 26, 190103 St. Petersburg, Russia

4. Department of Solid State Physics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia

Abstract

The production of non-toxic and homogeneous colloidal solutions of nanoparticles (NPs) for biomedical applications is of extreme importance nowadays. Among the various methods for generation of NPs, pulsed laser ablation in liquids (PLAL) has proven itself as a powerful and efficient tool in biomedical fields, allowing chemically pure silicon nanoparticles to be obtained. For example, laser-synthesized silicon nanoparticles (Si NPs) are widely used as contrast agents for bio visualization, as effective sensitizers of radiofrequency hyperthermia for cancer theranostics, in photodynamic therapy, as carriers of therapeutic radionuclides in nuclear nanomedicine, etc. Due to a number of complex and interrelated processes involved in the laser ablation phenomenon, however, the final characteristics of the resulting particles are difficult to control, and the obtained colloidal solutions frequently have broad and multimodal size distribution. Therefore, the subsequent fragmentation of the obtained NPs in the colloidal solutions due to pulsed laser irradiation can be utilized. The resulting NPs’ characteristics, however, depend on the parameters of laser irradiation as well as on the irradiated material and surrounding media properties. Thus, reliable knowledge of the mechanism of NP fragmentation is necessary for generation of a colloidal solution with NPs of predesigned properties. To investigate the mechanism of a laser-assisted NP fragmentation process, in this work, we perform a large-scale molecular dynamics (MD) modeling of FS laser interaction with colloidal solution of Si NPs. The obtained NPs are then characterized by their shape and morphological properties. The corresponding conclusion about the relative input of the properties of different laser-induced processes and materials to the mechanism of NP generation is drawn.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3