Nanoscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation

Author:

Wang Shuai,Wang Yaoyu,Zhang Shizhuo,Wang Lingfeng,Chen Shuai,Zheng Huai,Zhang Chen,Liu Sheng,Cheng Gary J.,Liu FengORCID

Abstract

Copper (Cu) is the main interconnect conductor for integrated circuits (IC), and its processing quality is very important to device performance. Herein, a hybrid process of plasma oxidation and femtosecond laser (fs-laser) ablation was proposed for the nanoscale precision removal of Cu in integrated circuits. In this hybrid process, the surface layer of Cu was oxidized to the copper oxide by plasma oxidation, and then the fs-laser with a laser fluence lower than the Cu ablation threshold was used to remove the copper oxide without damaging the underlying Cu. Theoretically, the surface temperature evolutions of Cu and copper oxide under the femtosecond laser were studied by the two-temperature model, and it was revealed that the ablation threshold of copper oxide is much lower than that of Cu. The experimental results showed that the ablation threshold of copper oxide is lower than that of Cu, which is consistent with the theoretical analysis. Using the hybrid process, a surface roughness of 3 nm and a removal accuracy of 4 nm were obtained in the process of Cu film processing, which were better than those obtained by fs-laser ablation. This demonstrated that the hybrid process has good application potential in the field of copper micromachining.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3