Abstract
Soft robotic grippers are able to carry out many tasks that traditional rigid-bodied grippers cannot perform but often have many limitations in terms of control and feedback. In this study, a Fin Ray effect inspired soft robotic gripper is proposed with its whole body directly 3D printed using soft material without the need of assembly. As a result, the soft gripper has a light weight, simple structure, is enabled with high compliance and conformability, and is able to grasp objects with arbitrary geometry. A force sensor is embedded in the inner side of the gripper, which allows the contact force required to grip the object to be measured in order to guarantee successful grasping and to provide the most suitable gripping force. In addition, it enables control and data monitoring of the gripper’s operating state at all times. Characterization and grasping demonstration of the gripper are given in the Experiment section. Results show that the gripper can be used in a wide range of scenarios and applications, such as the service robot and food industry.
Funder
National Natural Science Foundation of China
Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献