A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback

Author:

Yang YangORCID,Jin Kaixiang,Zhu Honghui,Song Gongfei,Lu HaojianORCID,Kang Long

Abstract

Soft robotic grippers are able to carry out many tasks that traditional rigid-bodied grippers cannot perform but often have many limitations in terms of control and feedback. In this study, a Fin Ray effect inspired soft robotic gripper is proposed with its whole body directly 3D printed using soft material without the need of assembly. As a result, the soft gripper has a light weight, simple structure, is enabled with high compliance and conformability, and is able to grasp objects with arbitrary geometry. A force sensor is embedded in the inner side of the gripper, which allows the contact force required to grip the object to be measured in order to guarantee successful grasping and to provide the most suitable gripping force. In addition, it enables control and data monitoring of the gripper’s operating state at all times. Characterization and grasping demonstration of the gripper are given in the Experiment section. Results show that the gripper can be used in a wide range of scenarios and applications, such as the service robot and food industry.

Funder

National Natural Science Foundation of China

Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3