Effect of Intermittent and Mild Cold Stimulation on the Immune Function of Bursa in Broilers

Author:

Liu Yanhong,Xue Ge,Li Shuang,Fu Yajie,Yin Jingwen,Zhang Runxiang,Li JianhongORCID

Abstract

Cold stress causes growth performance to decrease and increases production costs. Cold adaptation can enhance immune function and alleviate the negative impact caused by the stress condition. The study investigated the effect of intermittent and mild cold stimulation on the immune function of the bursa of Fabricius in broilers. A total of 400 healthy one-day-old broilers were divided into the control group (CC) and cold stimulation (CS) groups. The CC group was raised at a conventional raising temperature of broilers, while the CS groups were raised at 3°C below the temperature of the CC for three-, four-, five-, or six-hour periods at one-day intervals from 15 to 35 days of age (D35), denoted CS3, CS4, CS5, and CS6, respectively. Subsequently, they were raised at 20°C from 36 to 49 days of age (D49). The expression levels of TLRs, cytokines, and AvBDs were determined to access the immune function of bursa in broilers. After 21-day IMCS (at D36), the expression levels of TLR1, TLR15 and TLR21, interleukin (IL)-8, and interferon (IFN)-γ, as well as AvBD8 in CS groups, were lower than those in CC (p < 0.05). The expression levels of TLR3, TLR4 and TLR7, were decreased in the CS3, CS5, and CS6 groups (p < 0.05), but there were no significant differences in both the CC and CS4 groups (p > 0.05). When the IMCS ended for 14 days (at D49), the expression levels of TLR2, TLR3, TLR5, TLR7, TLR15, and TLR21, and IL-8, as well as AvBD2, AvBD4 and AvBD7 in CS groups, were lower than those in CC (p < 0.05). In addition to CS4, the expression levels of TLR1, IFN-γ, and AvBD8 in CS3, CS5, and CS6 were still lower than those in CC (p < 0.05). We concluded that the intermittent and mild cold stimulation could regulate immunoreaction by modulating the production of TLRs, cytokines, and AvBDs in the bursa, which could help broilers adapt to low ambient temperature and maintain homeostasis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3