3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep

Author:

Crovace Alberto Maria,Lacitignola LucaORCID,Forleo Donato Monopoli,Staffieri FrancescoORCID,Francioso Edda,Di Meo Antonio,Becerra JoséORCID,Crovace AntonioORCID,Santos-Ruiz LeonorORCID

Abstract

The main goal in the treatment of large bone defects is to guarantee a rapid loading of the affected limb. In this paper, the authors proposed a new reconstructive technique that proved to be suitable to reach this purpose through the use of a custom-made biomimetic porous titanium scaffold. An in vivo study was undertaken where a complete critical defect was experimentally created in the diaphysis of the right tibia of twelve sheep and replaced with a five-centimeter porous scaffold of electron beam melting (EBM)-sintered titanium alloy (EBM group n = 6) or a porous hydroxyapatite scaffold (CONTROL group, n = 6). After surgery, the sheep were allowed to move freely in the barns. The outcome was monitored for up to 12 months by periodical X-ray and clinical examination. All animals in the CONTROL group were euthanized for humane reasons within the first month after surgery due to the onset of plate bending due to mechanical overload. Nine months after surgery, X-ray imaging showed the complete integration of the titanium implant in the tibia diaphysis and remodeling of the periosteal callus, with a well-defined cortical bone. At 12 months, sheep were euthanized, and the tibia were harvested and subjected to histological analysis. This showed bone tissue formations with bone trabeculae bridging titanium trabeculae, evidencing an optimal tissue-metal interaction. Our results show that EBM-sintered titanium devices, if used to repair critical bone defects in a large animal model, can guarantee immediate body weight-bearing, a rapid functional recovery, and a good osseointegration. The porous hydroxyapatite scaffolds proved to be not suitable in this model of large bone defect due to their known poor mechanical properties.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3