Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement

Author:

Todo Chikage,Ikeno HidetoshiORCID,Yamase Keitaro,Tanikawa Toko,Ohashi Mizue,Dannoura Masako,Kimura Toshifumi,Hirano YasuhiroORCID

Abstract

Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two Pinus thunbergii Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3