Remote Sensing Evidence for Significant Variations in the Global Gross Domestic Product during the COVID-19 Epidemic

Author:

Guo BinORCID,Zhang Wencai,Pei Lin,Zhu Xiaowei,Luo PingpingORCID,Duan WeiliORCID

Abstract

Coronavirus disease 2019 (COVID-19) has been spreading rapidly and is still threatening human health currently. A series of measures for restraining epidemic spreading has been adopted throughout the world, which seriously impacted the gross domestic product (GDP) globally. However, details of the changes in the GDP and its spatial heterogeneity characteristics on a fine scale worldwide during the pandemic are still uncertain. We designed a novel scheme to simulate a 0.1° × 0.1° resolution grid global GDP map during the COVID-19 pandemic. Simulated nighttime-light remotely sensed data (SNTL) was forecasted via a GM(1, 1) model under the assumption that there was no COVID-19 epidemic in 2020. We constructed a geographically weighted regression (GWR) model to determine the quantitative relationship between the variation of nighttime light (ΔNTL) and the variation of GDP (ΔGDP). The scheme can detect and explain the spatial heterogeneity of ΔGDP at the grid scale. It is found that a series of policies played an obvious role in affecting GDP. This work demonstrated that the global GDP, except for in a few countries, represented a remarkably decreasing trend, whereas the ΔGDP exhibited significant differences.

Funder

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference59 articles.

1. An interactive web-based dashboard to track COVID-19 in real time;Lancet Infect. Dis.,2020

2. Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) (2022, February 01). Available online: https://coronavirus.jhu.edu/map.html.

3. Research opportunities in pandemic lockdown;Science,2020

4. Effect of non-pharmaceutical interventions to contain COVID-19 in China;Nature,2020

5. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns;Sci. Adv.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3