Abstract
A prominent area of data analytics is “timeseries modeling” where it is possible to forecast future values for the same variable using previous data. Numerous usage examples, including the economy, the weather, stock prices, and the development of a corporation, demonstrate its significance. Experiments with time series forecasting utilizing machine learning (ML), deep learning (DL), and AutoML are conducted in this paper. Its primary contribution consists of addressing the forecasting problem by experimenting with additional ML and DL models and AutoML frameworks and expanding the AutoML experimental knowledge. In addition, it contributes by breaking down barriers found in past experimental studies in this field by using more sophisticated methods. The datasets this empirical research utilized were secondary quantitative data of the real prices of the currently most used cryptocurrencies. We found that AutoML for timeseries is still in the development stage and necessitates more study to be a viable solution since it was unable to outperform manually designed ML and DL models. The demonstrated approaches may be utilized as a baseline for predicting timeseries data.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献