Circular Design Principles Applied on Dye-Sensitized Solar Cells

Author:

Schoden FabianORCID,Schnatmann Anna Katharina,Blachowicz TomaszORCID,Manz-Schumacher Hildegard,Schwenzfeier-Hellkamp Eva

Abstract

In a world with growing demand for resources and a worsening climate crisis, it is imperative to research and put into practice more sustainable and regenerative products and processes. Especially in the energy sector, more sustainable systems that are recyclable, repairable and remanufacturable are needed. One promising technology is dye-sensitized solar cells (DSSCs). They can be manufactured with low energy input and can be made from non-toxic components. More than 70% of the environmental impact of a product is already determined in the design phase of a product, which is why it is essential to implement repair, remanufacturing and recycling concepts into the product design. In this publication, we explore appropriate design principles and business models that can be applied to DSSC technology. To realize this, we applied the concept of Circo Track, a method developed by the Technical University of Delft, to DSSCs and investigated which design concepts and business models are applicable. This method enables companies to transform a product that is disposed of after its useful life into one that can be used for longer and circulates in material cycles. The most important result is the description of a performance-based business model in which DSSCs are integrated into the customer’s building and green energy is provided as a service. During the operational phase, data is collected for product improvement and maintenance, and repair is executed when necessary. When the contract expires, it can be renewed, otherwise the modules are dismantled, reused, remanufactured or recycled.

Funder

Fachhochschule Bielefeld

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference114 articles.

1. Pörtner, H.O., Roberts, D.C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R.A., Betts, R., Kerr, R.B., and Biesbroek, R. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press. IPCC Sixth Assessment Report.

2. Choudhury, S.R. (2022, January 06). JPMorgan on Semiconductor Shortage and Outlook for 2022. 2023. Available online: https://www.cnbc.com/2021/11/19/jpmorgan-on-semiconductor-shortage-and-outlook-for-2022-2023.html.

3. Erickson, L.E., and Brase, G. (2019). Reducing Greenhouse Gas Emissions and Improving Air Quality, CRC Press.

4. The Ellen MacArthur Foundation (2022, November 13). Completing the Picture How the Circular Economy Tackles Climate Change. September 2019, pp. 1–62. Available online: https://ellenmacarthurfoundation.org/completing-the-picture.

5. Michaux, S.P. (2021). Assessment of the Extra Capacity Required of Alternative Energy Electrical Power Systems to Completely Replace Fossil Fuels, GTK Mineral Intelligence.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3