Abstract
The availability and affordability of fertilizers are the main risks currently faced by the fertilizer market. Therefore, there is a need to look for other sources of nutrient supply for plants, while taking care of soil properties. The application of fertilizers with the addition of functionalized materials could help in the efficient use of nutrients. The aim of the study was to assess the impact of the application of mixtures with the addition of zeolite–vermiculite composites (NaX–Ver) on the culturable microorganisms and selected soil properties. A two-year pot experiment was conducted on soil with elevated contents of cadmium, zinc, and lead. The test treatments included soil mixed with NPK and additives in two doses of NaX–Ver combined with leonardite (Leo) or lignite (L). The test plant used in the experiment was maize. The soil material was analyzed for the number of bacteria, mold fungi, actinomycetes, and ammonifiers. Furthermore, soil pH, EC, N total, and SOC contents, as well as soil respiration activity, were tested. The applied fertilizer mixtures had a great effect on changes in the N total and SOC contents. The N total increase was 45.5% in NaX–Ver3%L3% and 51% in NaX–Ver9%Leo6%, and the largest SOC increase (24.3%) was recorded in the NaX–Ver3%Leo3% treatment. The highest respiration activity was determined in NaX–Ver3%Leo3% and NaX–Ver9%Leo6%: 2.12 µg C-CO2 g−1 DM h−1 and 2.14 µg C-CO2 g−1 DM h−1, respectively. A significant correlation between pH values and the number of culturable microorganisms was found. The number of soil microorganisms depended on the type of fertilization used. The best stimulation of the number of culturable soil microorganisms was found in treatments with the addition of 3% of L or Leo in combination with NaX–Ver. The percentage increases in the number of the analyzed culturable microorganisms after the application of leonardite-based fertilization in combination with the zeolite–vermiculite composite were, on average: bacteria, 1096%; mold fungi, 1529%; actinomycetes, 1477%; ammonifiers, 910%.
Funder
Foundation for Polish Science
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference60 articles.
1. European Atlas of Soil Biodiversity;Jeffery;Eur. Commision. Publ. Off.,2010
2. Paul, E.A., and Clark, F.E. (In Polish). Soil Microbiology and Biochemistry, 2000.
3. Microbial Diversity and Function in Soil: From Genes to Ecosystems;Torsvik;Curr. Opin. Microbiol.,2002
4. Microbial Diversity and Soil Functions;Nannipieri;Eur. J. Soil Sci.,2003
5. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms;Mendes;FEMS Microbiol. Rev.,2013
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献