Abstract
As a result of global warming, the pursuance of low-carbon, sustainable building materials has been prioritized. The development of geopolymer/cement-less binders can be considered an innovative and green way forward to minimize carbon footprint and tackle industrial waste material utilization. However, the chemical composition and properties of industrial waste-derived geopolymer binders varies considerably based on the chemical compositions of the source materials. This review paper presents a comprehensive understanding of the role of different chemical compositions (namely SiO2, Al2O3, CaO, Fe2O, and MgO) available in contemporary industrial wastes and the development of geopolymer binders. Subsequently, the compressive and microstructure properties of various FA-based geopolymer binders have been discussed to exhibit the feasibility of FA as a reliable source material. Significant findings and research gaps have been considered to aid future research works. Indeed, they provide guidelines for the commercial implementation of FA-based geopolymer binders as a low-carbon alternative to Portland cement.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献