A New Method to Assess Thick, Hard Roof-Induced Rock Burst Risk Based on Mining Speed Effect on Key Energy Strata

Author:

Li Wenlong,Tu ShihaoORCID,Tu Hongsheng,Liu Xun,Miao Kaijun,Zhao Hongbin,Ma Jieyang,Tang Long,Li Yan

Abstract

Roof-type rock burst (RTRB) frequently occurs in the hard, thick roof of working faces, which causes roadway failure, facility damage and even personnel casualties. Previous research results show that mining speed has obvious effects on the rock burst risk and many rock burst accidents are caused by an unreasonable mining speed. To provide a theoretical foundation for the determination of a reasonable mining speed in a specific working face subjected to RTRB, in this study, the key energy strata (KES) principle contraposing the RTRB was proposed, and the criterion of KES was determined by defining the energy release coefficient kc. On this basis, the energy accumulation characteristics of coal and energy release of surrounding rock were analyzed using FLAC3D numerical simulation. Accordingly, to assess the rock burst risk considering the mining speed effect, a new method was proposed and a new energy index Φvi was defined to divide rock burst risk with different mining speeds into four grades. To validate the availability of the KES principle and the new assessment method, they were adopted in a thick, hard roof working face. The application results indicate that the mining speed of 3.6 m/d obtained by the method meets the demands of safe and high-efficiency production.

Funder

National Natural Science Foundation of China

China National Natural Science Foundation Youth Funding Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3