Crack Propagation and AE/EMR Response Characteristics of Pre-Holed Coal Specimens under Uniaxial Compression

Author:

Feng XiaojunORCID,Hu Qinjing,Ding ZengORCID,Wang Dongming,Zhao Xue,Wei Qilei

Abstract

Drainage boreholes in soft coal seams are prone to deformation and failure under the action of in situ stress and mining stress, which has a significant impact on gas drainage in coal mines. To simulate the development and propagation of cracks around the shaft wall caused by in situ stress, the crack propagation of coals with different diameters and strengths during the failure process, and the acoustic emission (AE) and electromagnetic radiation (EMR) law and response characteristics are explored. The results show that: The failure process of coal with pores is divided into four stages: initial compaction stage (OA), elastic deformation stage (AB), yield deformation stage (BC), and macroscopic crack development stage (CD). The crack propagation develops significantly in the post-load peak stage, the coal body damage is aggravated, and the coal body is unstable and fractured. For the pre-holed coal specimens with the same diameter, as the coal becomes softer, the peak stress decreases significantly (from 15.73 to 10.05 MPa). The cumulative value of AE counts of hard coal samples increased from 2.3 × 105 to 3.6 × 105 with increasing diameters. The Digital Image Correlation system (DIC) strain cloud diagram found that there are ‘I’-type cracks around the axial direction of the prefabricated holes. Coal samples with smaller hole have shorter cracks, indicating that the diameter of the holes significantly changes the axial loading limit. The research results have a certain reference significance for understanding the crack propagation of coal under static loads and evaluating the deformation characteristic and spatiotemporal stability of gas drainage in soft coal seams.

Funder

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

1. The Failure of Brittle Solids Containing Small Cracks under Compressive Stress States;Acta Metall.,1986

2. Observations of Brittle Failure around a Circular Test Tunnel;Int. J. Rock Mech. Min. Sci.,1997

3. Experiment and Finite Element Simulation of X-Type Shear Fractures from a Crack in Marble;Tectonophysics,1987

4. Experiment on Fracture Extension Characteristics of Sandstone with Double Pore Fracture and Particle Flow Simulation;J. Basic Sci. Eng.,2014

5. Stability Analysis of Borehole Wall for Gas Drainage Boreholes in Broken Soft Coal Seam;Saf. Coal Mines,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3