Abstract
The issue of water hazards has led to the restriction of safe and efficient coal mine production in China. The transient electromagnetic method (TEM) is one of the most effective means of detecting the hidden dangers of water hazards in coal mines. However, the current understanding of the whole-space transient electromagnetic response of mine water is only on the general law due to the late start of the forward research. Therefore, this paper established multiple sets of simulation models in the whole area in order to study the rules and factors of transient electromagnetic responses. Subsequently, these laws are used to explain the detection data of TEM in the field. According to the simulation results, the electric properties, distance, and size had the greatest influence on the transient electromagnetic response of regular anomalous geological bodies, while the electromagnetic field projection area also had an impact on irregular ones. Furthermore, field application demonstrated that the response law and TEM’s affecting factors are acceptable for directing the detection of transient electromagnetic in coal mines. This research can advance the TEM’s data processing and interpretation technology and offer a theoretical basis for detailed investigation.
Funder
the Natural Science Foundation of Jiangsu Province
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献