Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization

Author:

Adewuyi Oludamilare BodeORCID,Folly Komla A.ORCID,Oyedokun David T. O.ORCID,Ogunwole Emmanuel IdowuORCID

Abstract

In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3