Gridding Effects on CO2 Trapping in Deep Saline Aquifers

Author:

Suriano AlessandroORCID,Peter Costanzo,Benetatos ChristoforosORCID,Verga FrancescaORCID

Abstract

Three-dimensional numerical models of potential underground storage and compositional simulation are a way to study the feasibility of storing carbon dioxide in the existing geological formations. However, the results of the simulations are affected by many numerical parameters, and we proved that the refinement of the model grid is one of them. In this study, the impact of grid discretization on CO2 trapping when the CO2 is injected into a deep saline aquifer was investigated. Initially, the well bottom-hole pressure profiles during the CO2 injection were simulated using four different grids. As expected, the results confirmed that the overpressure reached during injection is strongly affected by gridding, with coarse grids leading to non-representative values unless a suitable ramp-up CO2 injection strategy is adopted. Then, the same grids were used to simulate the storage behavior after CO2 injection so as to assess whether space discretization would also affect the simulation of the quantity of CO2 trapped by the different mechanisms. A comparison of the obtained results showed that there is also a significant impact of the model gridding on the simulated amount of CO2 permanently trapped in the aquifer by residual and solubility trapping, especially during the few hundred years following injection. Conversely, stratigraphic/hydrodynamic trapping, initially confining the CO2 underground due to an impermeable caprock, does not depend on gridding, whereas significant mineral trapping would typically occur over a geological timescale. The conclusions are that a fine discretization, which is acknowledged to be needed for a reliable description of the pressure evolution during injection, is also highly recommended to obtain representative results when simulating CO2 trapping in the subsurface. However, the expedients on CO2 injection allow one to perform reliable simulations even when coarse grids are adopted. Permanently trapped CO2 would not be correctly quantified with coarse grids, but a reliable assessment can be performed on a small, fine-grid model, with the results then extended to the large, coarse-grid model. The issue is particularly relevant because storage safety is strictly connected to CO2 permanent trapping over time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3