Carbon-Carbon Double Bond and Resorcinol in Resveratrol and Its Analogues: What Is the Characteristic Structure in Quenching Singlet Oxygen?

Author:

Kong Qingjun,Ren Xueyan,Qi Jianrui,Yu Jia,Lu JunORCID,Wang Shuo

Abstract

Stilbenes, particularly resveratrol and resveratrol dimers, could effectively quench singlet oxygen (1O2). It was reported that both resorcinol and carbon-carbon double bond quenching 1O2 can participate in the mechanism. However, it is still not clear which structure plays a dominant role in quenching 1O2. To investigate the characteristic structure in the mechanism of quenching 1O2, the resveratrol, pterostilbene and piceatannol quenching 1O2 abilities were compared by UHPLC-QTOF-MS2 and UHPLC-QQQ-MS2. Results showed that catechol, carbon-carbon double bond and resorcinol participated in the quenching of 1O2. Catechol ring plays a leading role in the mechanism, and the contribution of the structures in quenching 1O2 activity are as follows: catechol ring > carbon-carbon double bond > resorcinol ring, which is supported by the calculation of energy. Our findings will contribute to the future screening of stilbenes with higher activity, and those stilbenes may have great therapeutic potential in 1O2-mediated diseases.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3