KrF Laser and Plasma Exposure of PDMS–Carbon Composite and Its Antibacterial Properties

Author:

Fajstavr Dominik,Frýdlová BáraORCID,Rimpelová SilvieORCID,Kasálková Nikola Slepičková,Sajdl Petr,Švorčík Václav,Slepička Petr

Abstract

A polydimethylsiloxane (PDMS) composite with multi-walled carbon nanotubes was successfully prepared. Composite foils were treated with both plasma and excimer laser, and changes in their physicochemical properties were determined in detail. Mainly changes in surface chemistry, wettability, and morphology were determined. The plasma treatment of PDMS complemented with subsequent heating led to the formation of a unique wrinkle-like pattern. The impact of different laser treatment conditions on the composite surface was determined. The morphology was determined by AFM and LCM techniques, while chemical changes and chemical surface mapping were studied with the EDS/EDX method. Selected activated polymer composites were used for the evaluation of antibacterial activity using Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli) bacteria. The antibacterial effect was achieved against S. epidermidis on pristine PDMS treated with 500 mJ of laser energy and PDMS-C nanocomposite treated with a lower laser fluence of 250 mJ. Silver deposition of PDMS foil increases significantly its antibacterial properties against E. coli, which is further enhanced by the carbon predeposition or high-energy laser treatment.

Publisher

MDPI AG

Subject

General Materials Science

Reference42 articles.

1. High-performance carbon nanofibers and nanotubes;Hiremath,2017

2. Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering;Ponnamma,2018

3. Fundamentals, Properties, and Applications of Polymer Nanocomposites;Koo,2016

4. Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid pickering emulsion for chemical enhanced oil recovery (C-EOR)

5. Evidence for Metal-Semiconductor Transitions in Twisted and Collapsed Double-Walled Carbon Nanotubes by Scanning Tunneling Microscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3