LARNet: Real-Time Detection of Facial Micro Expression Using Lossless Attention Residual Network

Author:

Hashmi Mohammad FarukhORCID,Ashish B. Kiran KumarORCID,Sharma VivekORCID,Keskar Avinash G.,Bokde Neeraj DhanrajORCID,Yoon Jin HeeORCID,Geem Zong WooORCID

Abstract

Facial micro expressions are brief, spontaneous, and crucial emotions deep inside the mind, reflecting the actual thoughts for that moment. Humans can cover their emotions on a large scale, but their actual intentions and emotions can be extracted at a micro-level. Micro expressions are organic when compared with macro expressions, posing a challenge to both humans, as well as machines, to identify. In recent years, detection of facial expressions are widely used in commercial complexes, hotels, restaurants, psychology, security, offices, and education institutes. The aim and motivation of this paper are to provide an end-to-end architecture that accurately detects the actual expressions at the micro-scale features. However, the main research is to provide an analysis of the specific parts that are crucial for detecting the micro expressions from a face. Many states of the art approaches have been trained on the micro facial expressions and compared with our proposed Lossless Attention Residual Network (LARNet) approach. However, the main research on this is to provide analysis on the specific parts that are crucial for detecting the micro expressions from a face. Many CNN-based approaches extracts the features at local level which digs much deeper into the face pixels. However, the spatial and temporal information extracted from the face is encoded in LARNet for a feature fusion extraction on specific crucial locations, such as nose, cheeks, mouth, and eyes regions. LARNet outperforms the state-of-the-art methods with a slight margin by accurately detecting facial micro expressions in real-time. Lastly, the proposed LARNet becomes accurate and better by training with more annotated data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3