The Impact of Future Land Use Change on Carbon Emission and Its Optimization Strategy

Author:

Sun Yang12,Zhi Junjun13ORCID,Han Chenxu1,Xue Chen1ORCID,Zhao Wenjing1,Liu Wangbing4,Bao Shanju1

Affiliation:

1. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

2. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

3. Engineering Technology Research Center of Resources Environment and GIS Anhui Province, Wuhu 241002, China

4. Key Laboratory of Jianghuai Arable Land Resources Protection and Eco-Restoration, Hefei 230088, China

Abstract

Rapidly changing climate issues and increasingly severe carbon emissions are great challenges to the carbon peaking and carbon neutrality strategy. Analyzing the impact of future land use changes on carbon emissions can provide an important basis and reference for scientifically constructing a low-carbon and sustainable territorial spatial planning, as well as realizing the goal of the dual-carbon strategy. Based on land use data, agricultural production activity data, and energy consumption statistics, this study simulated the land use changes of the Yangtze River Delta region (YRDR) from 2030 to 2060 under the natural development (ND) scenario and sustainable development (SD) scenario by using the Patch-generating Land Use Simulation (PLUS) model and analyzed the impacts of future land use changes on carbon emissions. The results showed that: (1) The land use simulation results obtained by using the PLUS model under the sustainable development scenario were highly consistent with the actual land use with an OA value of 97.0%, a Kappa coefficient of 0.952, and a FoM coefficient of 0.403; (2) Based on the simulated land use under the SD scenario from 2030 to 2060, the quantity of construction land was effectively controlled, and the spatial distributions of cropland and forests were found to dominate in the north and south of the Yangtze River, respectively; (3) Anhui Province was the major contributor (accounted for 49.5%) to the net carbon absorption by cropland while Zhejiang Province was the major contributor (accounted for 63.3%) to the net carbon absorption by forest in the YRDR during the period 2020–2060 under the SD scenario; (4) Carbon emissions from construction land were the main source of carbon emissions from land use in the YRDR during the period 2020–2060 with proportions higher than 99% under both the ND and SD development scenarios. These findings underscore the urgent need for the government to take measures to balance the relationships between cropland and ecological protection and economic development, which provides a reference for the optimization of land use structure and policy formulation in the future.

Funder

Natural Science Foundation of China

Natural Science Foundation of Anhui Provincs

Natural Resources Science and Technology Project of Anhui Province

Provincial Quality Project at Anhui Higher Education Institutions

Publisher

MDPI AG

Reference43 articles.

1. Lee, H., and Romero, J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Dynamic Interactive Effects of Urban Land-Use Efficiency, Industrial Transformation, and Carbon Emissions;Dong;J. Clean. Prod.,2020

3. Global Carbon Budget 2020;Friedlingstein;Earth Syst. Sci. Data,2020

4. Global Patterns of Carbon Dioxide Emissions from Soils;Raich;Glob. Biogeochem. Cycles,1995

5. Increase in Observed Net Carbon Dioxide Uptake by Land and Oceans During the Past 50 Years;Ballantyne;Nature,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3