Enhancing Trust in Transactive Energy with Individually Linkable Pseudonymous Trading Using Smart Contracts

Author:

Sousa-Dias Daniel1ORCID,Amyot Daniel1ORCID,Rahimi-Kian Ashkan12ORCID,Mylopoulos John1ORCID

Affiliation:

1. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

2. IEMS Solution Ltd., Communitech, Kitchener, ON N2G 1H6, Canada

Abstract

The transactive energy market (TEM) is a recent development in energy management that enables prosumers to trade directly, promising many environmental and economic benefits. Prosumer trading necessitates sharing information to facilitate transactions. Additionally, many TEMs propose using blockchains to manage auctions and store transactions. These facts introduce privacy concerns: consumption data, trading history, and other identifying information pose risks to users if leaked. Anonymity by trading under a pseudonym is commonly presented as a solution; however, this creates risks for market participants: scammed users will not have recourse, and users with innocent malfunctions may be banned from trading. We propose the Individually Linkable Pseudonymous Trading Scheme (ILPTS), which enables users to trade under a pseudonym, protecting their identity, while a smart contract monitors reputations and can temporarily deanonymize a user, ensuring market integrity. ILPTS was developed in stages. Examination of existing TEM literature was performed to identify desirable features. Analysis of cryptography literature was performed to identify techniques that may confer certain features. It was found through formal analysis that ILPTS adheres to identified design goals, improves upon existing solutions, and resists common attacks against TEMs. Future work includes software simulation and on-device implementation to further verify security and feasibility.

Funder

CyPreSS: Software Techniques for the Engineering of Cyber-Physical Systems

Engineering Requirements for Socio-Technical Systems

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3