Investigation of the Optimal Operation Method of the Heat Recovery Ground Source Heat Pump System Installed in an Actual Building and Evaluation of Energy Saving Effect

Author:

Katsura Takao1ORCID,Nakamura Yasushi2,Ohara Tomoya3,Kinouchi Ken4,Nagano Katsunori1

Affiliation:

1. Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

2. Nippon Steel Engineering Co., Ltd., 1-5-1 Osaki, Shinagawa-ku, Tokyo 141-8604, Japan

3. TEPCO Energy Partner, Inc., 8-13-1 Ginza, Chuo-ku, Tokyo 104-0061, Japan

4. Japan Patent Office, 3-4-3 Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Abstract

In this paper, a heat recovery ground source heat pump (HR-GSHP) system, in which the primary pipes of the GSHP for air conditioning and the GSHP for hot water are connected to ground heat exchangers (GHEs) and each GSHP is operated simultaneously or within a short period of time, was installed in a dormitory building on a trial basis. Then, the optimal operation method to minimize the energy consumption of the system was investigated. The operating period of the GSHP for HW was changed and simulations were conducted to determine the operating period with the lowest energy consumption, which was 8 months from April to November. Furthermore, the HR-GSHP system was operated for 8 years from 2012 to 2019, and actual measurements were carried out to verify the system performance and the energy saving effect in optimal operation. In actual operation, it was confirmed that the minimum temperature was about 10 °C or higher even when the GSHP for HW was operated year-round. Therefore, the GSHP for HW was operated year-round after the third year of operation. It was confirmed that the operation of the GSHP for HW in summer, especially in August and September when the cooling load is large, can improve the system’s efficiency by the effect of recovering cooling exhaust heat. In the eighth year of operation, when the GSHP for HW was operated most during the summer season, the system was able to reduce power consumption for air conditioning and hot water supply by approximately 17%.

Funder

Kitakyushu City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3