Carbon Dioxide Oil Repulsion in the Sandstone Reservoirs of Lunnan Oilfield, Tarim Basin

Author:

Wu Zangyuan123,Feng Qihong1,Lian Liming4,Meng Xiangjuan123,Zhou Daiyu23,Luo Min23,Cheng Hanlie5ORCID

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. Tarim Oilfield Company, PetroChina, Korla 841000, China

3. R&D Center for Ultra-Deep Complex Reservoir Exploration and Development, China National Petroleum Corporation, Korla 841000, China

4. Research Institute of Petroleum Exploration & Development, China National Petroleum Corporation, Beijing 100083, China

5. School of Energy Resource, China University of Geosciences, Beijing 100083, China

Abstract

The Lunnan oilfield, nestled within the Tarim Basin, represents a prototypical extra-low-permeability sandstone reservoir, distinguished by high-quality crude oil characterised by a low viscosity, density, and gel content. The effective exploitation of such reservoirs hinges on the implementation of carbon dioxide (CO2) flooding techniques. This study, focusing on the sandstone reservoirs of Lunnan, delves into the mechanisms of CO2-assisted oil displacement under diverse operational parameters: injection pressures, CO2 concentration levels, and variations in crude oil properties. It integrates analyses on the high-pressure, high-temperature behaviour of CO2, the dynamics of CO2 injection and expansion, prolonged core flood characteristics, and the governing principles of minimum miscible pressure transitions. The findings reveal a nuanced interplay between variables: CO2’s density and viscosity initially surge with escalating injection pressures before stabilising, whereas they experience a gradual decline with increasing temperature. Enhanced CO2 injection correlates with a heightened expansion coefficient, yet the density increment of degassed crude oil remains marginal. Notably, CO2 viscosity undergoes a substantial reduction under stratigraphic pressures. The sequential application of water alternating gas (WAG) followed by continuous CO2 flooding attains oil recovery efficiency surpassing 90%, emphasising the superiority of uninterrupted CO2 injection over processes lacking profiling. The presence of non-miscible hydrocarbon gases in segmented plug drives impedes the oil displacement efficiency, underscoring the importance of CO2 purity in the displacement medium. Furthermore, a marked trend emerges in crude oil recovery rates as the replacement pressure escalates, exhibiting an initial rapid enhancement succeeded by a gradual rise. Collectively, these insights offer a robust theoretical foundation endorsing the deployment of CO2 flooding strategies for enhancing oil recovery from sandstone reservoirs, thereby contributing valuable data to the advancement of enhanced oil recovery (EOR) technologies in challenging, low-permeability environments.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3