Physics-Based Simulation of Ocean Scenes in Marine Simulator Visual System

Author:

Li HaijiangORCID,Ren Hongxiang,Qiu Shaoyang,Wang Chang

Abstract

The realistic simulation of ocean scenes is of great significance in many scientific fields. We propose an improved Smoothed Particle Hydrodynamics (SPH) framework to simulate the ocean scenes. The improved SPH combines nonlinear constant density constraints and divergence-free velocity field constraint. Density constraints adjust the particle distribution on position layer, so that the density is constrained to a constant state. The addition of the divergence-free velocity field constraint significantly accelerates the convergence of constant density constraint and further reduces the density change. The simulation results show that the improved SPH has high solution efficiency, large time steps, and strong stability. Then, we introduce a unified boundary handling model to simulate coupling scenes. The model samples the boundary geometry as particles by means of single layer nonuniform sampling. The contribution of the boundary particles is taken into account when the physical quantities of fluid particles are computed. The unified model can handle various types of complex geometry adaptively. When rendering the ocean, we propose an improved anisotropic screen space fluid method, which alleviates the discontinuity problem near the boundary and maintains the anisotropy of particles. The research provides a theoretical reference for the highly believable maritime scene simulation in marine simulators.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference45 articles.

1. Simulating Ocean Water;Tessendorf,2004

2. A real-time method for ocean surface simulation using the TMA model;Lee;Int. J. Comput. Inf. Syst. Ind. Manag. Appl.,2009

3. The Water Effects of Pirates of the Caribbean: Dead Men Tell no Tales;Hopper,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3