A Novel Approach for Target Attraction and Obstacle Avoidance of a Mobile Robot in Unknown Environments Using a Customized Spiking Neural Network

Author:

Abubaker Brwa Abdulrahman1ORCID,Razmara Jafar1,Karimpour Jaber1

Affiliation:

1. Department of Computer Science, University of Tabriz, Tabriz 51666-16471, Iran

Abstract

In recent years, implementing reinforcement learning in autonomous mobile robots (AMRs) has become challenging. Traditional methods face complex trials, long convergence times, and high computational requirements. This paper introduces an innovative strategy using a customized spiking neural network (SNN) for autonomous learning and control of mobile robots (AMR) in unknown environments. The model combines spike-timing-dependent plasticity (STDP) with dopamine modulation for learning. It utilizes the Izhikevich neuron model, leading to biologically inspired and computationally efficient control systems that adapt to changing environments. The performance of the model is evaluated in a simulated environment, replicating real-world scenarios with obstacles. In the initial training phase, the model faces significant challenges. Integrating brain-inspired learning, dopamine, and the Izhikevich neuron model adds complexity. The model achieves an accuracy rate of 33% in reaching its target during this phase. Collisions with obstacles occur 67% of the time, indicating the struggle of the model to adapt to complex obstacles. However, the model’s performance improves as the study progresses to the testing phase after the robot has learned. Its accuracy surges to 94% when reaching the target, and collisions with obstacles reduce it to 6%. This shift demonstrates the adaptability and problem-solving capabilities of the model in the simulated environment, making it more competent for real-world applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3