Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging

Author:

Liu Bo1,Zhang Peng2,Wu Shubo2ORCID,Zou Yajie2ORCID,Li Linbo2,Tang Shuning2

Affiliation:

1. Kunshan Rail Transit City Development Co., Ltd., Kunshan 215300, China

2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200438, China

Abstract

Parking duration analysis is an important aspect of evaluating parking demand. Identifying accurate distribution characteristics of parking duration can not only enhance parking efficiency and parking facility planning, but also provide essential support for parking delicacy management. Previous studies have proposed various statistical distributions to depict parking duration data. However, it is difficult to find a certain type of distribution to describe the characteristics of parking duration in diverse parking facilities, since model uncertainty is caused by stochastic parking behaviors and diverse parking environments. To address the model uncertainty, a Bayesian model averaging (BMA) was applied to integrate the advantages of different statistical distributions to depict parking duration characteristics. The parking dataset was collected from a commercial parking lot in Chengdu, China, and the dataset was categorized into two groups (i.e., temporary users and long-term users) to analyze. A set of statistical distributions was chosen as candidate models, and their corresponding unknown parameters were estimated. The posterior model probability for each candidate model was calculated according to the goodness-of-fit (GOF) metric. The findings of the study illustrate that there is no universally applicable distribution form (e.g., log-normal distribution) to depict the parking duration distribution for both user types, whereas the BMA approach assigns weights to candidate models and always provides an accurate description of the parking duration characteristics. The parking duration analysis is useful for improving parking management strategies and optimizing parking pricing policies.

Funder

Kunshan Rail Transit City Development Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3