TAEF: A Task Allocation-Based Ensemble Fuzzing Framework for Optimizing the Advantages of Heterogeneous Fuzzers

Author:

Sun Yutao1ORCID,Xu Xianghua1ORCID

Affiliation:

1. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Ensemble fuzzing in parallel with heterogeneous fuzzers has been proposed to leverage the advantages of diverse fuzzers and improve testing efficiency. However, in current ensemble fuzzing methods, the collaboration among different fuzzers is achieved solely by synchronizing the seeds discovered by each fuzzer. This results in a high likelihood of different fuzzers choosing the same seeds and creating a large number of equivalent testcases, thus reducing overall fuzzing efficiency. Meanwhile, the existing task division method proposed by AFLTeam is highly coupled with the fuzzer specially designed for it, making it challenging to apply to ensemble fuzzing directly. So, in this paper, we proposed a callgraph-based task division method suitable for ensemble fuzzing. Firstly, we divided the target program’s callgraph into subgraphs (subtasks) balancing expected workloads. Then, we divided the global seed corpus into subcorpora, each corresponding to a subtask, making fuzzers easily accept the subtasks. Finally, we designed synchronization mechanisms for coverage bitmaps and seeds to realize the collaborative fuzzing among different fuzzers and a cyclic subtask scheduling strategy to fully leverage the benefits of ensemble fuzzing. We implemented a prototype called TAEF. The evaluation results show that in the best-case scenario, our method has up to 24% more branch coverage than previous work.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3