Three-Dimensional Velocity Field Interpolation Based on Attention Mechanism

Author:

Yao Xingmiao12,Cui Mengling1,Wang Lian1,Li Yangsiwei1,Zhou Cheng1,Su Mingjun3,Hu Guangmin12

Affiliation:

1. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Center for information Geoscience, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Research Institute of Petroleum Exploration and Development-Northwest (NWGI), PetroChina, Lanzhou 730020, China

Abstract

The establishment of a three-dimensional velocity field is an essential step in seismic exploration, playing a crucial role in understanding complex underground geological structures. Accurate 3D velocity fields are significant for seismic imaging, observation system design, precise positioning of underground geological targets, structural interpretation, and reservoir prediction. Therefore, obtaining an accurate 3D velocity field is a focus and challenge in this field of study. To achieve intelligent interpolation of the 3D velocity field more accurately, we have built a network model based on the attention mechanism, JointA 3DUnet. Based on the traditional U-Net, we have added triple attention blocks and channel attention blocks to enhance dimension information interaction, while adapting to the different changes of geoscience data in horizontal and vertical directions. Moreover, the network also incorporates dilated convolution to enlarge the receptive field. During the training process, we introduced transfer learning to further enhance the network’s performance for interpolation tasks. At the same time, our method is a deep learning interpolation algorithm based on an unsupervised model. It does not require a training set and learns information solely from the input data, automatically interpolating the missing velocity data at the missing positions. We tested our method on both synthetic and real data. The results show that, compared with traditional intelligent interpolation methods, our approach can effectively interpolate the three-dimensional velocity field. The SNR increased to 36.22 dB, and the pointwise relative error decreased to 0.89%.

Funder

National Natural Science Foundation of China

PetroChina Science and Technology Major Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3