An Efficient Document Retrieval for Korean Open-Domain Question Answering Based on ColBERT

Author:

Kang Byungha1,Kim Yeonghwa1,Shin Youhyun1

Affiliation:

1. Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

Open-domain question answering requires the task of retrieving documents with high relevance to the query from a large-scale corpus. Deep learning-based dense retrieval methods have become the primary approach for finding related documents. Although deep learning-based methods have improved search accuracy compared to traditional techniques, they simultaneously impose a considerable increase in computational burden. Consequently, research on efficient models and methods that optimize the trade-off between search accuracy and time to alleviate computational demands is required. In this paper, we propose a Korean document retrieval method utilizing ColBERT’s late interaction paradigm to efficiently calculate the relevance between questions and documents. For open-domain Korean question answering document retrieval, we construct a Korean dataset using various corpora from AI-Hub. We conduct experiments comparing the search accuracy and inference time among the traditional IR (information retrieval) model BM25, the dense retrieval approach utilizing BERT-based models for Korean, and our proposed method. The experimental results demonstrate that our approach achieves a higher accuracy than BM25 and requires less search time than the dense retrieval method employing KoBERT. Moreover, the most outstanding performance is observed when using KoSBERT, a pre-trained Korean language model that learned to position semantically similar sentences closely in vector space.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3