Experimental Study of the Multiple Fractalisation of Coal and Rock Failure Subjected to the Coupled Effects of Water, Temperature and Dynamic Loads

Author:

Jin Tingxu1ORCID,Sun Xiaoyuan12ORCID,Liu Kai1,Lin Shurong3,Yang Shaoqiang12,Xie Jianlin1

Affiliation:

1. College of Safety and Emergency Management Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. Intelligent Monitoring and Control of Coal Mine Dust Key Laboratory of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan 030024, China

3. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

The mechanical properties of water-rich coal and rock in a subzero environment are very different from those at room temperature, which causes many unexpected hazards for projects. In this study, coal and rock samples subjected to the coupled effects of water, temperature, and dynamic loads were taken as the research object, and the discussion was shaped around their mechanical properties. The crack evolution trend and different gradient impact velocities were determined using a split-Hopkinson pressure bar (SHPB). Multiple fractals were based on high-speed digital image correlation (HS-DIC) technology and the quality-screening method; the evolution trend of the surface cracks in the crushing process and the distribution characteristics of the specimen fragments after crushing were examined from the perspective of fractals. This provided a powerful supplement to the existing research system on the problem of mining via the freezing method, and it accounted for the shortcomings of the existing research to a certain extent. In this research, the results mainly showed four points: (1) The coal samples were determined to have a wave velocity between 1.68 and 2.01 km/s, while the rock samples were between 2.24 and 2.61 km/s. Under the same conditions, the rock’s resistance to deformation and damage was greater than that of coal. (2) In the saturated state, the plastic strength of the coal and rock samples was greater than that in the dry state, due to the strengthening of their internal stresses caused by the presence of fissure water. (3) With decreasing temperature, the degree of the dynamic compression factor of coal and rock showed a trend of initially increasing, then decreasing, and then increasing. With the increase in the loading rate, the destruction of the coal and rock was more intense, and the destruction process was accelerated. (4) After the saturated coal and rock samples were frozen, their interiors were affected by the dual factors of contraction under the influence of temperature and expansion under the influence of the freezing expansion force. The internal fissures closed or shrank, and the water in the pores turned into ice, leading to an increase in pore volume.

Funder

Fundamental Research Program of Shanxi Province

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Taiyuan University of Science and Technology Scientific Research Initial Funding

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3